Quantcast
Channel: Haynes Lab | Emory
Viewing all articles
Browse latest Browse all 216

Research – bioRxiv – Targeted regulation of episomal plasmid DNA expression in eukaryotic cells with a methylated-DNA-binding activator

$
0
0

Fig_abstract_v1Targeted regulation of episomal plasmid DNA expression in eukaryotic cells with a methylated-DNA-binding activator
Enwerem-Lackland I, Warga E, Dugoni M, Elmer J, Haynes KA. (2021) bioRxiv. https://www.biorxiv.org/content/10.1101/2021.11.01.466616v1

This work was inspired by our team’s interest in making DNA delivery into human cells easier and more more reliable. Currently, synthetic viruses are the most efficient method, but only up to ~1000 bp of DNA can be reliably packaged in these vectors, and current DNA-delivering viruses can cause dangerous and lethal immunogenic reactions. Non-viral plasmid DNA may be a safer alternative, but delivery and expression tends to be poor and unreliable. Our work and research from other labs has implicated epigenetic blockades as one culprit. Therefore, we developed a small protein, inspired by work from the van Steensel lab and Khalil lab, that carries a gene expression activator to newly-delivered methylated plasmid DNA to boost its expression. The “landing pad” for the activator is the smallest of its kind (4 base pair unit, GAmeTC), and therefore should be easy to use in any plasmid DNA. We named this system The Dpn Adaptor Linked Effector (DAL-E) to honor the pioneering biochemist Marie M. Daly, the first scientist to determine that a central epigenetic protein (histone) is lysine-rich, and the first black woman to earn a PhD in Chemistry in the U.S.


Viewing all articles
Browse latest Browse all 216

Latest Images

Trending Articles





Latest Images